

A Glimpse of Rectangles in Connection with

Gopa numbers of First Kind

S. Vidhyalakshmi¹ and M.A. Gopalan²

¹Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

²Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract:

This paper has two sections I and II. Section I exhibits rectangles, where, in each rectangle, twice the area added with its semi-perimeter is represented by a Gopa number of first kind. Section II exhibits rectangles, where, in each rectangle, twice the area minus its semi-perimeter is represented by a Gopa number of first kind. The total number of primitive and non-primitive rectangles is also given.

Keywords:

Rectangles, Gopa number of first kind, Primitive rectangles, Non-Primitive rectangles.

Introduction:

The diophantine problems connecting geometrical representations with special patterns of numbers are presented in [1-21]. This paper concerns with the problem of finding rectangles such that, in each rectangle, twice the area added with its semi-perimeter as well as twice the area minus its semi-perimeter is represented by a Gopa number of first kind. The total number of primitive and non- primitive is also given.

It seems that the above problems have not been considered earlier.

. Definition: Gopa numbers of the First kind

Let N be a non-zero positive integersuch that $N = P \times Q$, where P and Q are distinct primes.

If the relation

Sum of the divisors of N = Product of the sum of the divisors of P, Q

= a perfect square

then, the integer N is referred as Gopa number of the first kind

Examples: 22,94,119,214,217,382,497,517,527,679,1177,2101,5029

Method of Analysis:

Let R be a rectangle with dimensions x and y. Let A and S represent the Area and Semi-perimeter of R. If g .c. d . (x,y) =1,then R is referred as primitive rectangle. Otherwise, i is called non-primitive rectangle.

Section-I: 2A + S = Gopa number of the first kind

The problem under consideration is mathematically equivalent to solving the binary quadratic diophantine equation represented by

$$2xy + (x + y) = \alpha \tag{I.1}$$

where α is a Gopa number of the first kind. Rewrite (I. 1) as

$$x = \frac{\alpha - y}{2y + 1} \tag{I.2}$$

Given α , it is possible to find x in integers for suitable y in integers. The following Table 1.1 exhibits the Gopa number of the first kind with their corresponding rectangles satisfying (I.1):

		Observations	
Gopa number	R(x,y)	Primitive	Non- Primitive
of the first		rectangles	rectangles
kind (α)			
22	(1,7), (7,1),(2,4),(4,2)	-	4
94	(1,31),(3,13),(4,10),(10,4),(13,3),(31,1)	-	6
214	(1,71), (5,19), (6,16), (16,6), (19,5), (71,1)	-	6
217	(1,72), (2,43), (7,14), (14,7),(43,2),(72,1)	6	-
382	(1,127),	-	10
	(2,76),(4,42),(7,25),(8,22),(22,8),		
	(25,7),(42,4),(76,2),(127,1)		

Section- II : 2A - S = **Gopa number of the first kind**

The problem under consideration is mathematically equivalent to solving the binary quadratic diophantine equation represented by

$$2xy - (x + y) = \alpha \tag{II.1}$$

where α is a Gopa-Vidh number. Rewrite (II.1) as

$$x = \frac{\alpha + y}{2y - 1} \tag{II.2}$$

Given α , it is possible to find x in integers for suitable y in integers. The following Table 2.1 exhibits the Gopa number of the first kind with their corresponding rectangles satisfying (II.1)

		Observations	
Gopa	R(x, y)	Primitive	Non- Primitive
number of		rectangles	rectangles
the first			
kind (α)			
22	(1,23), (3,5),(5,3),(23,1)	-	4
94	(1,95), (2,32), (4,14), (5,11), (11,5), (14,4),	-	8
	(32,2),(95,1)		
214	(1,215), (2,72), (6,20),	-	8
	(7,17),(17,7),(20,6),(72,2),(215,1)		
217	(1,218),	8	-
	(2,73),(3,44),(8,15),(15,8),(44,3),(73,2),		
	(218,1)		
382	(1,383), (2,128), (3,77), (5,43),(8,26),	-	12
	(9,23),(23,9),(26,8),(43,5),(77,3),(128,2),		
	(383,1)		

Table 2.1:	$2A - S = \alpha$
------------	-------------------

Conclusion:

In this paper, we have presented rectangles such that, in each rectangle, twice the area added with its semi-perimeter as well as twice the area minus the semi-perimeter is represented by a Gopa number of the first kind.

To conclude, one may search for rectangles with other characterization in connection with higher order .Gopa numbers of the first kind.

References:

- 1. W. Sierpinski, Pythagorean triangles, Dover publications, INC, Newyork, 2003.
- 2. M.A. Gopalan and A. Vijaysankar, Observations on a Pythagorean problem, Acta Ciencia Indica, Vol. XXXVI M, No.4, 2010, pp 517-520.

International Research Journal of Education and Technology ISSN 2581-7795

- 3. M.A. Gopalan, A. Gnanam and G. Janaki, A Remarkable Pythagorean problem, Acta Ciencia Indica, Vol. XXXIII M, No.4, 2007, pp 1429-1434.
- 4. M.A. Gopalan and A. Gnanam, Pythagorean triangles and Polygonal numbers International Journal of Mathematical Sciences, Vol 9, No 1-2, 2010, pp 211-215.
- 5. M.A. Gopalan and G. Janaki, Pythagorean triangle with Area Perimeter as a special number, Bulletin of Pure and Applied sciences, 27(2), 2008, pp 393-402.
- 6. M.A. Gopalan and G. Janaki, Pythagorean triangle with nasty number as a leg, Journal of Applied Analysis and Applications, Vol 4, No 1-2, 2008, pp 13-17.
- 7. G. Janaki and R. Radha, Special Pythagorean triangle and six digit Harshad numbers, IJIRSET, 5(3), March 2016, pp 3931-3933.
- 8. G. Janaki and R. Radha, Special pairs of Pythagorean triangle and Harshad numbers, Asian Journal of Science and Technology, 7(8), August 2016, pp 3397-3399.
- 9. G. Janaki and P. Saranya, Pythagorean Triangle with Area/Perimeter as a Jarasandha numbers of orders 2 and 4, IRJET, 3(7), July 2016, pp 1259-1264.
- 10. G. Janaki and R. Radha, Pythagorean Triangle with Area/Perimeter as a Harshad number of digits 4,5 and 6, IJRASET, 5(12), December 2017, pp 1754-1762.
- 11. G. Janaki and P. Saranya, Special Pythagorean triangle in connection with triangles Narcissistic Numbers of order 3 and 4, AIJRSTEM, 14(2), 2016, pp 150-153.
- 12. G. Janaki and P. Saranya, Special pairs of Pythagorean triangles and Narcissistic numbers, IJMRD, 3(4), April 2016, pp 106-108.
- 13. S. Vidhyalakshmi, M. A. Gopalan and S. Aarthy Thangam, A Connection between pairs of rectangles and Sphenic Numbers, JETIR, 6(1), January 2019, pp 231-235.
- 14. Dr. A. Kavitha, A Connection between Pythagorean Triangle and Harshad Numbers, IJRASET, 7(3), March-2019, pp 91-101.
- 15. S. Mallika, A Connection between Pythagorean Triangle and Sphenic Numbers, IJRASET, 7(3), March-2019, pp 63-66.
- 16. M. A. Gopalan, J. Srilekha, Special Characterizations of Rectangles in Connection with Armstrong Numbers of order 3,4,5,6. IJMRAS, 2(3), March-2019, pp 5-10.
- M. A. Gopalan, J. Srilekha, On rectangles in connection with Harshad numbers and Spheric numbers, Research Trends in Mathematics and Statistics, Volume 4, Chapter 7, Akinik Publications, Delhi,2019, pp 115 – 125.
- 18. M. A. Gopalan, S. Vidhyalakshmi, S. Aarthy Thangam, On Pairs of Rectangles and Armstrong Numbers, IJAER, Volume-14, Number 7, 2019, pp 1570-1583.
- 19. S. Mallika, Pythagorean triangle with $\frac{2A}{P} + H Leg$ as a Narcisstic Number of order 3,4 and 5, GJESR, 6(3), March-2019, pp 1-4.
- 20. S. Vidhyalakshmi, T. Mahalakshmi, M. A. Gopalan, Pythagorean Triangle with 2 * A / P as Gopa- Vidh number., IJRAR, 6(2), April- June 2019,pp59-63.
- 21. S.Devibala and M.A.Gopalan ,Pythagorean triangle with 2*A/P as Gopa numbers of the first kind ,IJRPR ,vol 3 ,no 5,May 2022 ,2474-2477.