International Research Journal of Education and Technology ISSN 2581-7795

A Glimpse of Rectangles in Connection with Gopa numbers of First Kind

S. Vidhyalakshmi ${ }^{1}$ and M.A. Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract

: This paper has two sections I and II. Section I exhibits rectangles, where, in each rectangle, twice the area added with its semi-perimeter is represented by a Gopa number of first kind. Section II exhibits rectangles, where, in each rectangle, twice the area minus its semi-perimeter is represented by a Gopa number of first kind. The total number of primitive and non-primitive rectangles is also given.

Keywords:
Rectangles, Gopa number of first kind, Primitive rectangles, Non-Primitive rectangles.

Introduction:

The diophantine problems connecting geometrical representations with special patterns of numbers are presented in [1-21]. This paper concerns with the problem of finding rectangles such that, in each rectangle, twice the area added with its semi-perimeter as well as twice the area minus its semi-perimeter is represented by a Gopa number of first kind. The total number of primitive and non- primitive is also given.

It seems that the above problems have not been considered earlier.

. Definition: Gopa numbers of the First kind

Let N be a non-zero positive integersuch that $N=P \times Q$, where P and Q are distinct primes.

If the relation
Sum of the divisors of $\mathrm{N}=$ Product of the sum of the divisors of P, Q
= a perfect square
then, the integer N is referred as Gopa number of the first kind

International Research Journal of Education and Technology ISSN 2581-7795

Examples: 22,94,119,214,217,382,497,517,527,679,1177,2101,5029

Method of Analysis:

Let R be a rectangle with dimensions x and y. Let A and S represent the Area and Semi-perimeter of R. If g.c. d. $(x, y)=1$, then R is referred as primitive rectangle. Otherwise, i is called non-primitive rectangle.
Section-I : $\quad 2 A+S=$ Gopa number of the first kind
The problem under consideration is mathematically equivalent to solving the binary quadratic diophantine equation represented by

$$
\begin{equation*}
2 x y+(x+y)=\alpha \tag{I.1}
\end{equation*}
$$

where α is a Gopa number of the first kind.
Rewrite (I. 1) as

$$
\begin{equation*}
x=\frac{\alpha-y}{2 y+1} \tag{I.2}
\end{equation*}
$$

Given α, it is possible to find x in integers for suitable y in integers. The following Table 1.1 exhibits the Gopa number of the first kind with their corresponding rectangles satisfying (I.1):

Table 1.1: $2 A+S=\alpha$

Gopa number of the first kind (α)	$R(x, y)$	Observations	
		Primitive rectangles	
22	$(1,7),(7,1),(2,4),(4,2)$	Non- Primitive rectangles	
94	$(1,31),(3,13),(4,10),(10,4),(13,3),(31,1)$	-	4
214	$(1,71),(5,19),(6,16),(16,6),(19,5),(71,1)$	-	6
217	$(1,72),(2,43),(7,14),(14,7),(43,2),(72,1)$	6	6
382	$(1,127)$, $(2,76),(4,42),(7,25),(8,22),(22,8)$, $(25,7),(42,4),(76,2),(127,1)$	-	10

Section- II : $2 A-S=$ Gopa number of the first kind
The problem under consideration is mathematically equivalent to solving the binary quadratic diophantine equation represented by

International Research Journal of Education and Technology

 ISSN 2581-7795$$
\begin{equation*}
2 x y-(x+y)=\alpha \tag{II.1}
\end{equation*}
$$

where α is a Gopa-Vidh number.
Rewrite (II.1) as

$$
\begin{equation*}
x=\frac{\alpha+y}{2 y-1} \tag{II.2}
\end{equation*}
$$

Given α, it is possible to find x in integers for suitable y in integers. The following Table 2.1 exhibits the Gopa number of the first kind with their corresponding rectangles satisfying (II.1)

Table 2.1: $2 A-S=\alpha$

Gopa number of the first kind (α)	$R(x, y)$	Observations	
		Primitive rectangles	Non- Primitive rectangles
	$(1,23),(3,5),(5,3),(23,1)$	-	4
94	$(1,95),(2,32),(4,14),(5,11),(11,5),(14,4)$, $(32,2),(95,1)$	-	8
214	$(1,215)$, $(7,17),(17,7),(20,6),(72,2),(215,1)$	-	8
217	$(1,218)$, $(2,73),(3,44),(8,15),(15,8),(44,3),(73,2)$, $(218,1)$	8	-
382	$(1,383),(2,128),(3,77),(5,43),(8,26)$, $(9,23),(23,9),(26,8),(43,5),(77,3),(128,2)$, $(383,1)$	-	12

Conclusion:

In this paper, we have presented rectangles such that, in each rectangle,twice the area added with its semi-perimeter as well as twice the area minus the semi-perimeter is represented by a Gopa number of the first kind.

To conclude, one may search for rectangles with other characterization in connection with higher order .Gopa numbers of the first kind.

References:

1. W. Sierpinski, Pythagorean triangles, Dover publications, INC, Newyork, 2003.
2. M.A. Gopalan and A. Vijaysankar, Observations on a Pythagorean problem, Acta Ciencia Indica, Vol. XXXVI M, No.4, 2010, pp 517-520.

International Research Journal of Education and Technology

 ISSN 2581-77953. M.A. Gopalan, A. Gnanam and G. Janaki, A Remarkable Pythagorean problem, Acta Ciencia Indica, Vol. XXXIII M, No.4, 2007, pp 1429-1434.
4. M.A. Gopalan and A. Gnanam, Pythagorean triangles and Polygonal numbers International Journal of Mathematical Sciences, Vol 9, No 1-2, 2010, pp 211-215.
5. M.A. Gopalan and G. Janaki, Pythagorean triangle with Area Perimeter as a special number, Bulletin of Pure and Applied sciences, 27(2), 2008, pp 393-402.
6. M.A. Gopalan and G. Janaki, Pythagorean triangle with nasty number as a leg, Journal of Applied Analysis and Applications, Vol 4, No 1-2, 2008, pp 13-17.
7. G. Janaki and R. Radha, Special Pythagorean triangle and six digit Harshad numbers, IJIRSET, 5(3), March 2016, pp 3931-3933.
8. G. Janaki and R. Radha, Special pairs of Pythagorean triangle and Harshad numbers, Asian Journal of Science and Technology, 7(8), August 2016, pp 3397-3399.
9. G. Janaki and P. Saranya, Pythagorean Triangle with Area/Perimeter as a Jarasandha numbers of orders 2 and 4, IRJET, 3(7), July 2016, pp 1259-1264.
10. G. Janaki and R. Radha, Pythagorean Triangle with Area/Perimeter as a Harshad number of digits 4,5 and 6, IJRASET, 5(12), December 2017, pp 1754-1762.
11. G. Janaki and P. Saranya, Special Pythagorean triangle in connection with triangles Narcissistic Numbers of order 3 and 4, AIJRSTEM, 14(2), 2016, pp 150-153.
12. G. Janaki and P. Saranya, Special pairs of Pythagorean triangles and Narcissistic numbers, IJMRD, 3(4), April 2016, pp 106-108.
13. S. Vidhyalakshmi, M. A. Gopalan and S. Aarthy Thangam, A Connection between pairs of rectangles and Sphenic Numbers, JETIR, 6(1), January 2019, pp 231-235.
14. Dr. A. Kavitha, A Connection between Pythagorean Triangle and Harshad Numbers, IJRASET, 7(3), March-2019, pp 91-101.
15. S. Mallika, A Connection between Pythagorean Triangle and Sphenic Numbers, IJRASET, 7(3), March-2019, pp 63-66.
16. M. A. Gopalan, J. Srilekha, Special Characterizations of Rectangles in Connection with Armstrong Numbers of order 3,4,5,6. IJMRAS, 2(3), March-2019, pp 5-10.
17. M. A. Gopalan, J. Srilekha, On rectangles in connection with Harshad numbers and Spheric numbers, Research Trends in Mathematics and Statistics, Volume 4, Chapter 7, Akinik Publications, Delhi,2019, pp 115-125.
18. M. A. Gopalan, S. Vidhyalakshmi, S. Aarthy Thangam, On Pairs of Rectangles and Armstrong Numbers, IJAER, Volume-14, Number 7, 2019, pp 1570-1583.
19. S. Mallika, Pythagorean triangle with $\frac{2 A}{P}+H-L e g$ as a Narcisstic Number of order 3,4 and 5, GJESR, 6(3), March-2019, pp 1-4.
20. S. Vidhyalakshmi, T. Mahalakshmi, M. A. Gopalan, Pythagorean Triangle with $2 * A / P$ as Gopa- Vidh number., IJRAR, 6(2), April- June 2019,pp59-63.
21. S.Devibala and M.A.Gopalan ,Pythagorean triangle with $2 * A / P$ as Gopa numbers of the first kind ,IJRPR, vol 3 ,no 5,May 2022 ,2474-2477.
